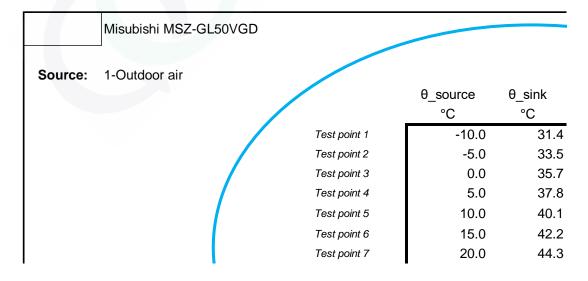
Input data from manufacturer


Name Misubishi MSZ-GL50VGD

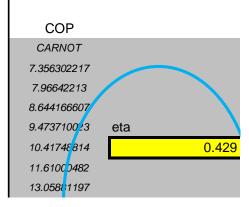
Inside air flow_MAX	1014	m³/h	-
Inside air flow_MIN	408	m³/h	

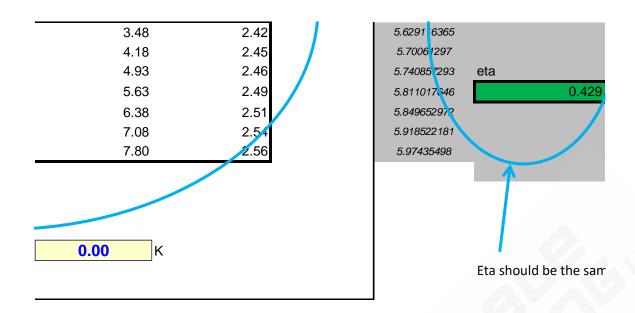
	KW		°C	°C
COP	Input Power		T_outside	T_inside
	0.96	Testpoint 1	-10.0	21.0
	1.14	Testpoint 2	-5.0	21.0
	1.26	Testpoint 3	0.0	21.0
	1.36	Testpoint 4	5.0	21.0
	1.43	Testpoint 5	10.0	21.0
	1.47	Testpoint 6	15.0	21.0
	1.52	Testpoint 7	20.0	21.0

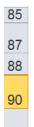
^ this columr

Input data for PHPP SI units

	Test point 8 Test point 9 Test point 10 Test point 11 Test point 12 Test point 13 Test point 14	-10.0 -5.0 0.0 5.0 10.0 15.0 20.0	46.8 52.0 57.6 62.8 68.4 73.6 78.9
Temperature difference in sink		ΔθSink	


Insert into PHPP




			_	
m³/h	kW		kW	°C
Airflow_inside unit	Heatig capacity	COP	P_el	T_sink_max flow
1014	3.48	3.63	0.959	31.4
1014	4.18	3.68	1.137	33.5
1014	4.93	3.91	1.26	35.7
1014	5.63	4.14	1.36	37.8
1014	6.38	4.48	1.425	40.1
1014	7.08	4.83	1.466	42.2
1014	7.80	5.13	1.521	44.3

n to be sourced from manufacturer's test data, but as close as possible to 20°C preferred

Heating cap COP (De-kW	rated)
3.48	3.63
4.18	3.68
4.93	3.91
5.63	4.14
6.38	4.48
7.08	4.83
7.80	5.13

Abbreviated Instructions (see "Description of Calculation of split-type Air-to-Air Heat pumps for heating

Step 1: In this spread sheet insert manufacturers data in all blank input cells C6 – I24. Power designed in cell J9 i

Step 2: Make sure there is no storage for heating chosen in DHW tab in row 186 of PHPP 9

Step 3: Temperature of Sink, (T_sink_designed in cell N13). Insert this value into DHW tab cell J30 of PHPP 9

Step 4: "Paste special" "as values only" relevant (SI or IP units) input values (below row 36 on this spreadsheet)

Step 5: At the top of the HP tab, choose your just entered split air-air HP unit from the drop down menu in cell J

Step 6: In cells P10-R10 in PER tab in PHPP 9, choose Heat pump as the primary source of heating (usually input

Power designed	1194.00	w
T_sink_designed	29.60726644	°C

°C

T_sink_min flow

46.8

52.0

57.6

62.8

68.4

73.6

78.9

Input data for PHPP IP units

		Misubishi MSZ-GL50VGI -Outdoor air)				
	dice.	-Outdoor all		θ_source °F	θ_sink °F	Heating cap kBtu/hr	De-rated COI
	0.493288594		Test point 1	14.0	88.5	11.88	3.63
	0.461479594		Test point 2	23.0	92.3	14.27	3.68
	0.452640329		Test point 3	32.0	96.3	16.83	3.91
	0.436967764	•	Test point 4	41.0	100.1	19.22	4.14
Λ	0.429776634		Test point 5	50.0	104.1	21.77	4.48
11	0.415974671		Test point 6	59.0	107 9	24.16	4.83
	0.39270074		Test point 7	68.0	111.8	26.62	5.13

	0.429230197 0.429230197 0.429230197 0.429230197 0.429230197 0.429230197 0.429230197	Test point 8 Test point 9 Test point 10 Test point 11 Test point 12 Test point 13 Test point 14	14.0 23.0 32.0 41.0 50.0 59.0 68.0	116.3 125.7 135.7 145.1 155.1 164.5 174.1	11.88 14.27 16.83 19.22 21.77 24.16 26.62	2.42 2.45 2.46 2.49 2.51 2.54 2.56
ne	Temperatu	re difference in sink	ΔθSink		0.00	К

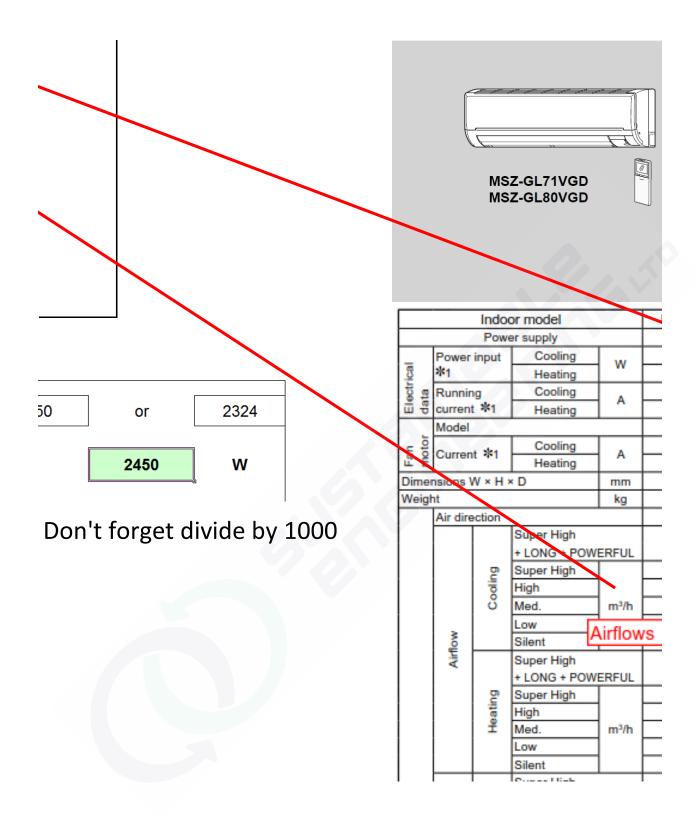
$$P_L - P_G = 245$$

=

purposes in HP sheet in PHPP" by Tomas Mikeska of PHI, source of this excerpt):

is "nominal power of distribution system" calculated by PHPP (cell F22 in PHPP 8)

into the corresponding user data field at the bottom of the HP tab of your PHPP. Note: "difference in sinl 21 of PHPP 9, then choose "2-radiators" from the dr 85.3 100%)



SERVICE MA

Models

MSZ-GL25VC MSZ-GL35VC MSZ-GL42VC MSZ-GL50VC MSZ-GL60VC MSZ-GL71VC MSZ-GL80VC

c temp" should be zero

NUAL

No. OBH728

3D - A1

Outdoor unit service manual MUZ-GL·VGD Series (OBH729)

SPLIT-TY

OUT

SE

Mod€

MU MU MU MU MU MU

MU

CONTENTS

Dimensions (WxDxH): 923 x 250 x 305mm

PARTS CATALOG (OBB/28)

Cooling Capacity: 4.8

Cooling Efficiency – EE

MSZ-GL50VGD

	34
	34
	0.32
	0.32
RC0J3	
	0.32
	0.32
923 × 30	
	12.5

1,014	
1,014	
876	
726	
	\neg _
1,014	4
1,014	
876	
744	
540	
V 408	_
1 100	_

MUZ-GL

CAPACITY:

INDOOR DB (°C)	
15	
21	
26	

MITSUBISHI ELECTRIC

PE AIR CONDITIONERS

TDOOR UNIT

RVICE MANUAL

No. OBH729

sle

IZ-GL25VGD - A1

IZ-GL35VGD -A1

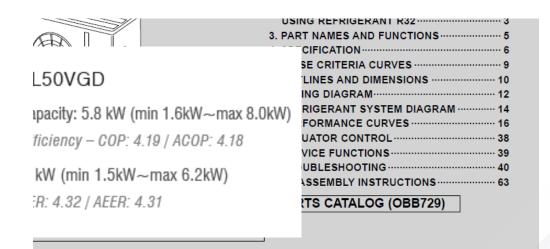
IZ-GL42VGD -A1

IZ-GL50VGD -A1

IZ-GL60VGD -A1

IZ-GL71VGD - A1

IZ-GL80VGD -A1


Indoor unit service manual MSZ-GL•VGD Series (OBH728)

CONTENTS

- 1. TECHNICAL CHANGES 2
- 2. SERVICING PRECAUTIONS FOR UNITS

HEING DEEDIGED ANT DOG

50VGD ←

Selected Unit Heatir

5.8 kW INPUT: 1370 W

OUTDOOR WB (°C)									
-10 -5 0 5					10				
Q	INPUT	Q	INPUT	Q	INPUT	Q	INPUT	Q	
3.65	891	4 41	1069	5.16	1206	5.92	1302	6.67	
3.48	959	4.18	1137	4.93	1260	5.63	1356	6.38	
3.13	1028	3.89	1206	4.58	1329	5.34	1425	6.09	

The Seasonal Energy Efficienc

ng Data

)	15		20	
INPUT	Q	INPUT	Q	INPUT
1384	7.37	1425	8.12	1452
1425	7.08	1466	7.80	1521
1493	6.79	1534	7.54	1576

y Ratio estimated from MaxCooling / Input pow

er